
Scrum Reference Card
by Michael James and Luke Walter

 About Scrum
A Management Framework

Scrum is a management framework for incremental product
development using one or more cross-functional, self-organizing teams
of about seven people each.

It provides a structure of roles, events, rules, and artifacts. Teams are
responsible for creating and adapting their processes within this
framework.

Scrum uses fixed-length iterations, called Sprints. Sprints are no more
than 30 days long, preferably shorter. Scrum teams try to develop a
potentially releasable (properly tested) product increment every Sprint.

An Alternative to Waterfall

Scrum’s incremental, iterative approach trades the traditional phases of
"waterfall" development for the ability to develop a subset of high-value
features first, incorporating feedback sooner.

Figure 1: Traditional “waterfall” development depends on a perfect understanding of the product
requirements at the outset and minimal errors executing each phase.

Figure 2: Scrum blends all development activities into each iteration, adapting to discovered
realities at fixed intervals.

The greatest potential benefit of Scrum is for complex work involving
knowledge creation and collaboration, such as new product
development. Scrum is usually associated with object-oriented software
development. Its use has also spread to the development of products
such as semiconductors, mortgages, and wheelchairs.

Doing Scrum, or Pretending to Do Scrum?

Scrum’s relentless reality checks expose dysfunctional constraints in
individuals, teams, and organizations. Many people claiming to do
Scrum modify the parts that require breaking through organizational
impediments and end up robbing themselves of most of the benefits.

 Scrum Roles
Scrum Development Team

• Cross-functional (e.g., includes members with testing skills, and
others not traditionally called developers: business analysts,
designers, domain experts, etc.)

• Self-organizing / self-managing, without externally assigned roles
• Plans one Sprint at a time with the Product Owner
• Has autonomy regarding how to develop the increment
• Intensely collaborative
• Most successful when located in one team room, particularly for the

first few Sprints
• Most successful with long-term, full-time membership. Scrum moves

work to a flexible learning team and avoids moving people or
splitting them between teams.

• 6 ± 3 members
• Has a leadership role
Product Owner

• Single person responsible for maximizing the return on investment
(ROI) of the development effort

• Responsible for product vision
• Constantly re-prioritizes the Product Backlog, adjusting any long-

term expectations such as release plans
• Final arbiter of requirements questions
• Decides whether to release
• Decides whether to continue development
• Considers stakeholder interests
• Has a leadership role

Scrum Master

• Works with the organization to make Scrum possible
• Ensures Scrum is understood and enacted
• Creates an environment conducive to team self-organization
• Shields the team from external interference and distractions to keep

it in group flow (a.k.a. the zone)
• Promotes improved engineering practices
• Has no management authority over the team
• Helps resolve impediments
• Has a leadership role

Requirements
Analysis

Design

Code

Integration

Test

Deploy

© Copyright 2010-2020 Michael James and Luke Walter. All rights reserved.

 Scrum Events

Figure 3: Scrum flow.

Sprint Planning

At the beginning of each Sprint, the Product Owner and team plan
which Product Backlog Items they will attempt to convert to working
product during the Sprint. The Product Owner is responsible for
declaring which items are the most important to the business. The
Development Team is responsible for selecting the amount of work they
feel they can implement without accruing technical debt. The team
“pulls” work from the Product Backlog to the Sprint Backlog.

When teams are given complex work that has inherent uncertainty,
they must work together to intuitively gauge how much work to pull
into a Sprint, while learning from previous Sprints. Planning their
hourly capacity and comparing their estimates to actuals makes the
team pretend to be precise and reduces ownership. Unless the work is
truly predictable, they should discard such practices within the first few
Sprints or avoid them altogether.

Until a team has learned how to complete a potentially releasable
product increment each Sprint, it should reduce the amount of
functionality it plans. Failure to change old habits leads to technical
debt and eventual design death, as shown in Figure 14.

If the top of the Product Backlog has not been refined, a portion of the
event might be spent doing this.

Toward the end of the Sprint Planning Event, the team determines how
it will accomplish the work. For example, they may break the selected
items into an initial list of Sprint Tasks.

The maximum allotted time (a.k.a. timebox) for planning a 30-day
Sprint is eight hours, reduced proportionally for a shorter Sprint.

Figure 4: Sprint Planning outcome is selected Product Backlog Items (PBIs) and subordinate
Sprint Tasks.

Daily Scrum and Sprint Execution

Every day at the same time and place, the Scrum Development Team
members spend a total of 15 minutes inspecting their progress toward
the Sprint goal and creating a plan for the day. Team members may
share with each other what they did the previous day to help meet the
Sprint goal, what they’ll do today, and what impediments they face.

Standing up at the Daily Scrum will help keep it short. Topics that
require additional attention may be discussed by whoever is interested
after every team member has spoken.

The team may find it useful to maintain a current Sprint Task List and a
Sprint Burndown Chart. During Sprint execution, it is common to
discover additional tasks necessary to achieve the Sprint goals.
Impediments caused by issues beyond the team’s control are
considered organizational impediments.

The Daily Scrum is intended to disrupt old habits of working
separately. Members should remain vigilant for signs of the old
approach. For example, looking only at the Scrum Master when
speaking is one symptom that the team hasn’t learned to operate as a
self-organizing entity.

Sprint Review

At the end of the Sprint, the Scrum Team holds Sprint Review to
inspect and adapt the product as it emerges. They demonstrate a
working product increment to everyone who is interested, particularly
customers and end users, and get their feedback.

The team reviews the items selected during Sprint Planning and
explains which items are considered done. For example, a software item
that is merely “code complete” is considered not done because untested
software isn’t shippable. Incomplete items are returned to the Product
Backlog and ranked according to the Product Owner’s revised priorities
as candidates for future Sprints.

The Scrum Master may help the Product Owner and stakeholders
convert their feedback to new Product Backlog Items for prioritization
by the Product Owner. Often, new scope discovery outpaces the team’s
rate of development. If the Product Owner feels that the newly
discovered scope is more important than the original expectations, new
scope displaces old scope in the Product Backlog. Some items will never
be done.

External stakeholders and end users should participate. New products,
particularly software products, are hard to visualize in a vacuum. Many
customers need to be able to react to a piece of functioning software to
discover what they will actually want. Iterative development, a value-
driven approach, allows the creation of products that couldn’t have
been specified up front in a plan-driven approach.

Sprint Planning

Meeting

Daily Scrum

Sprint Review

Meeting

Sprint

Retrospective

Meeting

Backlog

Refinement

Meeting

Product Backlog

User login

SSL enable

Reset lost password

Account lockout

LDAP integration

Register a new login

Edit registration

Admin reporting

determine requirements for password
policy page layout

(design)
get latest JBoss
running

choose persistence
strategy
(Hibernate?)

write code (using
test-driven
development)

exploratory
testing

agree on best algorithm for
randomizing passwords decide where to

put the link
code (using test-
driven
development)

add screenshot
and text to user
manual

exploratory
testing

analyze example config file get official
certificate from I.T. install certificate

update deploy
target in build.xml

exploratory
testing (3
browsers)

update installation
document

Sprint Backlog

User login

Reset lost password

SSL enable

Account lockout
after three
attempts

code (using test-driven development)
update migration
tool to include new
row for locked
account

manual test (try
to break in with
policy installed)

update documents

Selected
Product

Increment

User-managed

© Copyright 2010-2020 Michael James and Luke Walter. All rights reserved.

Sprint Retrospective

Each Sprint ends with a retrospective. The team reflects on its own
process. They inspect their behavior and take action to adapt it for
future Sprints.

Dedicated Scrum Masters will find alternatives to the stale, fearful
meetings everyone has come to expect. An in-depth retrospective
requires an environment of psychological safety not found in most
organizations. Without safety, the retrospective discussion will either
avoid the uncomfortable issues or deteriorate into blaming and
hostility.

A common impediment to full transparency on the team is the presence
of people who conduct performance appraisals.

Another impediment to an insightful retrospective is the human
tendency to jump to conclusions and propose actions too quickly. Agile
Retrospectives, the most popular book on this topic, describes a series
of steps to slow this process down: Set the stage, gather data, generate
insights, decide what to do, close the retrospective. Another guide 1

recommended for Scrum Masters, The Art of Focused Conversations,
breaks the process into similar steps: Objective, reflective, interpretive,
and decisional (ORID). 2

A third impediment to psychological safety is geographic distribution.
Geographically dispersed teams usually do not collaborate as well as
those in team rooms.

Retrospectives often expose organizational impediments. Once a team
has resolved the impediments within its immediate influence, the
Scrum Master should work to expand that influence, chipping away at
the organizational impediments.

Scrum Masters should use a variety of techniques to facilitate
retrospectives, including silent writing, timelines, and satisfaction
histograms. In all cases, the goals are to gain a common understanding
of multiple perspectives and to develop actions that will take the team
and organization to the next level.

Backlog Refinement

Most Product Backlog Items (PBIs) initially need refinement because
they are too large and poorly understood. While Backlog Refinement is
not a required event, it is a required activity. Most Scrum Teams find it
useful to take a short time out of every Sprint for this activity. They get
together to prepare the Product Backlog for upcoming Sprints.

In Backlog Refinement, large vague items are split and clarified,
considering both business and technical concerns. Sometimes a subset
of the team, in conjunction with the Product Owner and other
stakeholders, will compose and split Product Backlog Items before
involving the entire team.

While refining items, the team may estimate the amount of effort they
would expend to complete items in the Product Backlog and provide
other technical information to help the Product Owner prioritize them. 3

A skilled Scrum Master can help the team identify thin vertical slices of
work that still have business value, while promoting a rigorous
definition of “done” that includes proper testing and refactoring.

It is common to write Product Backlog Items in User Story form. In 4

this approach, oversized PBIs are called epics. Traditional development
breaks features into horizontal tasks (resembling waterfall phases) that
cannot be prioritized independently and lack business value from the
customer’s perspective. This habit is hard to break.

Agility requires learning to split large epics into user stories
representing very small product features. For example, in a medical
records application, the epic “display the entire contents of a patient’s
allergy records to a doctor” yielded the story “display whether or not

any allergy records exist.” While the engineers anticipated significant
technical challenges in parsing the internal aspects of the allergy
records, the presence or absence of any allergy was the most important
thing the doctors needed to know. Collaboration between business
people and technical people to split this epic yielded a story
representing 80% of the business value for 20% of the effort of the
original epic.

Since most customers don’t use most features of most products, it’s
wise to split epics to deliver the most valuable stories first. While
delivering lower-value features later is likely to involve some rework,
rework is better than no work.

This activity has also been called “Backlog Grooming.”

Figure 5: During Backlog Refinement, large PBIs (often called “epics”) near the top of the Product
Backlog are split into thin vertical feature slices (“stories”), not horizontal implementation phases.

 Scrum Artifacts

Scrum defines three artifacts: Product Backlog, Sprint Backlog, and
Increment.

Product Backlog

Figure 6: Product Backlog

• Force-ranked (prioritized) list of desired functionality
• Visible to all stakeholders
• Any stakeholder (including the Team) can add items
• Constantly re-prioritized by the Product Owner
• Constantly refined by the Scrum Team
• Items at top should be smaller (e.g., smaller than 1/4 of a Sprint)

than items at bottom

User login

SSL enable

Reset lost password

Account lockout after

LDAP integration

Register a new login

Admin reporting

only one item
at a time
is top prioritytop items

are more
granular

 Agile Retrospectives, Pragmatic Bookshelf, Derby/Larson (2006)1

 The Art of Focused Conversations, New Society Publishers (2000)2

 The team should collaborate to produce a jointly-owned estimate for an item.3

 User Stories Applied: For Agile Software Development, Addison Wesley, Cohn (2004)4

© Copyright 2010-2020 Michael James and Luke Walter. All rights reserved.

Cut/paste rich
text and graphics

Cut/
paste
plain
text

Cut/
paste

rich text

database
schema

Product Backlog Item (PBI)

• Describes the what (more than the how) of a customer-centric
feature

• Often written in User Story form
• Has a product-wide definition of done to prevent technical debt
• May have item-specific acceptance criteria
• Effort is estimated by the Development Team, ideally in relative units

(e.g., story points)

Figure 7: A PBI represents a customer-centric feature, usually requiring several tasks to achieve
definition of done.

Sprint Backlog

• Consists of selected PBIs negotiated between the team and the
Product Owner during Sprint Planning

• No changes are made during the Sprint that would endanger the
Sprint Goal

• Initial tasks are identified by the team during Sprint Planning
• Team will discover additional tasks needed to meet the Sprint Goal

during Sprint execution
• Visible to the team
• Referenced during the Daily Scrum

Figure 8: Sprint Backlog is best represented with an “information radiator” such as a physical
taskboard.

Increment

• The product capabilities completed during the Sprints
• Brought to a usable, releasable state by the end of each Sprint
• Released as often as the Product Owner wishes
• Inspected during every Sprint Review

Sprint Task (optional)

• Describes how to achieve the PBI’s what
• Typically involves one day or less of work
• During Sprint Execution, a point person may volunteer to be

primarily responsible for a task
• Owned by the entire team; collaboration is expected

Figure 9: Sprint tasks required to complete one backlog item require a mix of activities no longer
done in separate phases (e.g., requirements elicitation, analysis, design, implementation,
deployment, testing).

Sprint Burndown Chart (optional)

• Summation of total team work remaining within one Sprint
• Updated daily
• May go up before going down
• Intended to facilitate team self-organization
• Fancy variations, such as itemizing by point person or adding trend

lines, tend to reduce effectiveness at encouraging collaboration
• Seemed like a good idea in the early days of Scrum, but in practice

often misused as a management report, inviting intervention. The
Scrum Master should discontinue use of this chart if it becomes an
impediment to team self-organization.

Figure 10: Sprint Burndown Chart

Product / Release Burndown Chart (optional)

• Tracks the remaining Product Backlog effort from one Sprint to the
next

• May use relative units such as Story Points for Y axis
• Depicts historical trends to adjust forecasts

Figure 11: A Release Burndown Chart variation popularized by Mike Cohn. The red line tracks 5

PBIs completed over time (velocity), while the blue line tracks new PBIs added (new scope
discovery). The intersection projects release completion date from empirical trends.

250

200

150

100

50

0
24-Jul 26-Jul 28-Jul 30-Jul 1-Aug 3-Aug 5-Aug 7-Aug 9-Aug 11-Aug 13-Aug

Effort Remaining Backlog w/ unestimated items Velocity Trendline Work Added/Removed Trendline New Baseline

Acme Rocket Sled Enhanced Product Burndown
Projected completion in 1 - 5 sprints

0

E
ffo

rt
un

its
: s

to
ry

 p
oi

nt
s

400

300

200

100

-100

-200

-300

-400

-500

Sprint -- Average Velocity: 47.36 story points/sprint
1 2 3 4 5 6 7 8 9 10 11 (12) (13) (14) (15) (16) (17)

7/
5/

06

7/
21

/0
6

8/
14

/0
6

8/
29

/0
6

9/
14

/0
6

9/
29

/0
6

10
/1

7/
06

11
/2

/0
6

11
/1

9/
06

12
/4

/0
6

12
/1

8/
06

1/
1/

07

 Agile Estimation and Planning, Cohn, Addison Wesley (2006)5

© Copyright 2010-2020 Michael James and Luke Walter. All rights reserved.

determine
requirements
for password
policy

page layout
(design)

get latest
JBoss
running

choose
persistence
strategy
(Hibernate?)

write code
(using test-
driven
development
)

exploratory
testing

Account lockout after three
attempts

 Acceptance Criteria:

Small

determine
requirements
for password
policy

page layout
(design)

get latest
JBoss
running

choose
persistence
strategy
(Hibernate?)

write code
using test-
driven
development

exploratory
testing

agree on best
algorithm for
randomizing
passwords

decide
where to
put the link

code (using
test-driven
development
)

add
screenshot
and text to
user manual

exploratory
testing

analyze
example config
file

get official
certificate
from I.T.

install
certificate

update
deploy
target in
build.xml

exploratory
testing (3
browsers)

update
installation
document

Forecasted
PBIs

User login

 Acceptance Criteria:

S

Reset lost password

 Acceptance Criteria:

M

SSL enable

 Acceptance Criteria:

S

Lock account after
three attempts
 Acceptance Criteria:

S

code (using
test-driven
development)

update
migration
tool to
include new
row for

manual test
(try to
break in
with policy
installed)

update
documents

Tasks Not
Started

Tasks In
Progress

Tasks
Completed

 Multiple Teams
Your Organization is Designed to Impede Agility

Introducing Scrum without simplifying the organization's structure and
policies leads to change theater and no real improvement. Large
organizations are usually just pretending. Successful adoptions of 6

Large Scale Scrum are both top down and bottom up.

Scrum addresses uncertain requirements and technology risks by
grouping people from multiple disciplines into one team — in one team
room — to increase bandwidth, visibility, and trust.

Adding too many people to a team makes things worse. Grouping
people by specialty also makes things worse. Grouping people by
architectural components (a.k.a. component teams) makes things
worse.

Figure 12: Communication pathways increase as a square of team size.

Feature Teams

Fully cross-functional “feature teams” are able to operate at all layers of
the architecture in order to deliver customer-centric features. In a large
system, this requires learning new skills.

As teams focus on learning — rather than short-term micro-efficiencies
— they can help create a learning organization.

Figure 13: Feature teams learn to span architectural components.

One Product Backlog, One Product Owner

In Large Scale Scrum, multiple teams share a single Product Backlog
prioritized by a single Product Owner. They share the responsibility of
maintaining this backlog. To avoid asynchronous dependencies, they
collaborate across teams in one shared Sprint, using overall and multi-
team versions of the events described in this card, often with team-
appointed representatives. As in single-team Scrum, they attempt to 7

develop one properly tested, integrated, shippable product increment
every Sprint.

 Related Practices
Lean

Scrum is a general framework coinciding with the Agile movement in
software development, which is partly inspired by Lean manufacturing
approaches such as the Toyota Production System. 8

eXtreme Programming (XP)

While Scrum does not prescribe specific engineering practices, Scrum
Masters are responsible for promoting increased rigor in the definition
of done. Items that are called “done” should stay done. Automated
regression testing prevents vampire stories that leap out of the grave.
Design, architecture, and infrastructure must emerge over time, subject
to continuous reconsideration and refinement, instead of being
“finalized” at the beginning, when we know nothing.

The Scrum Master can inspire the team to learn engineering practices
associated with XP: Continuous Integration (continuous automated
testing), Test-Driven Development (TDD), constant merciless
refactoring, pair programming, mob programming, frequent check-ins,
etc. Informed application of these practices prevents technical debt.

Figure 14: The straight green line represents the general goal of Agile methods: early and
sustainable delivery of valuable features. Doing Scrum properly entails learning to satisfy a
rigorous definition of “done” to prevent technical debt. 9

 “Seven Obstacles to Enterprise Agility,” Gantthead, James (2010) http://scrumreferencecard.com/7-obstacles-to-enterprise-agility/6

 See http://less.works to learn about Large Scale Scrum7

 Agile movement defined at http://agilemanifesto.org8

 Graph inspired by discussions with Ronald E. Jeffries9

© Copyright 2010-2020 Michael James and Luke Walter. All rights reserved.

User Interface Layer

Business Logic Layer

Persistence Layer

Team 1

informal
working
group

Team 2 Team 3

Robust “done”

Waterfall

Weak “done”

=Technical
 debt

Time

R
u
n
n
in

g
 (

a
n
d
 T

e
s
te

d
)

F
e
a
tu

re
s

http://agilemanifesto.org
http://scrumreferencecard.com/7-obstacles-to-enterprise-agility/
http://less.works

 Team Self-Organization
Engaged Teams Outperform Manipulated Teams

During Sprint execution, team members develop an intrinsic interest in
shared goals and learn to manage each other to achieve them. The
natural human tendency to be accountable to a peer group contradicts
years of habit for workers. Allowing a team to become self-propelled,
rather than manipulated through extrinsic punishments and rewards,
contradicts years of habit for managers. The Scrum Master’s 10

observation and persuasion skills increase the probability of success,
despite the initial discomfort.

Challenges and Opportunities

Self-organizing teams can radically outperform larger, traditionally
managed teams. Family-sized groups naturally self-organize when the
right conditions are met:
• members are committed to clear, short-term goals
• members can gauge the group’s progress
• members can observe each other’s contribution
• members feel safe to give each other unvarnished feedback

Psychologist Bruce Tuckman describes stages of group development as
“forming, storming, norming, performing.” Optimal self-organization 11

takes time. The team may perform worse during early iterations than it
would have performed as a traditionally managed working group. 12

Heterogeneous teams outperform homogeneous teams at complex
work. They also experience more conflict. Disagreements are normal 13

and healthy on an engaged team; team performance will be determined
by how well the team handles these conflicts.

Bad apple theory suggests that a single negative individual
(“withholding effort from the group, expressing negative affect, or
violating important interpersonal norms”) can disproportionately 14

reduce the performance of an entire group. Such individuals are rare,
but their impact is magnified by a team’s reluctance to remove them.
This can be partly mitigated by giving teams greater influence over who
joins them.

Other individuals who underperform in a boss/worker situation (due to
being under-challenged or micromanaged) will shine on a Scrum team.

Self-organization is hampered by conditions such as geographic
distribution, boss/worker dynamics, part-time team members, and
interruptions unrelated to Sprint goals. Most teams will benefit from a
full-time Scrum Master who works hard to mitigate these kinds of
impediments. 15

 When is Scrum Appropriate?

Figure 15: Scrum, an empirical framework, is appropriate for work with uncertain requirements
and/or uncertain technology issues. 1617

Scrum is intended for the kinds of work people have found
unmanageable using defined processes — uncertain requirements
combined with unpredictable technology implementation risks. When
deciding whether to apply Scrum, as opposed to plan-driven
approaches such as those described by the PMBOK® Guide, consider
whether the underlying mechanisms are well-understood or whether
the work depends on knowledge creation and collaboration. For
example, Scrum was not originally intended for repeatable types of
production and services.

Also consider whether there is sufficient commitment to grow a self-
organizing team.

 About the Authors
Michael James learned to program many years
ago. He worked directly with Ken Schwaber to
become a Scrum trainer. He coaches technical
folks, managers, and executives on optimizing
businesses to deliver value. Please send
feedback to mj@seattlescrum.com or
http://twitter.com/michaeldotjames

Luke Walter learned empirical product
development many years ago as an industrial
designer. He encountered Scrum on a
development team with Michael James, before
they both became Scrum trainers. He coaches
businesses to recognize wasteful practices and
organize around customer value. Please send
feedback to lwalter@collab.net.

For help with Agility, please see http://seattlescrum.com.

Chaotic

Predictable
Anarchy

Requirements

Te
ch

no
lo

gy

known

kn
ow
n

un
kn
ow
n

unknown

It is typical to adopt the defined (theoretical) modeling
approach when the underlying mechanisms by which a
process operates are reasonably well understood.

When the process
is too complex for
the defined
approach, the
empirical approach
is the appropriate
choice.*

 Intrinsic motivation is linked to mastery, autonomy, and purpose. “Rewards” harm this http://www.youtube.com/watch?v=u6XAPnuFjJc 10

 “Developmental Sequence in Small Groups.” Psychological Bulletin, 63 (6): 384-99 Tuckman, referenced repeatedly by Schwaber.11

 The Wisdom of Teams: Creating the High-Performance Organization, Katzenbach, Harper Business (1994)12

 Group Genius: The Creative Power of Collaboration, Sawyer, Basic Books (2007). (This book is #2 on Michael James’s list of recommended reading for Scrum Masters.)13

 “How, when, and why bad apples spoil the barrel: Negative group members and dysfunctional groups.” Research in Organizational Behavior, Volume 27, 181–230, Felps/Mitchell/Byington, (2006)14

 An example detailed list of full-time Scrum Master responsibilities: http://ScrumMasterChecklist.org15

 Extensively modified version of a graph in Strategic Management and Organizational Dynamics, Stacey (1993), referenced in Agile Software Development with Scrum, Schwaber/Beedle (2001).16

 Process Dynamics, Modeling, and Control, Ogunnaike, Oxford University Press, 1992.17

© Copyright 2010-2020 Michael James and Luke Walter. All rights reserved. Version 1.5

http://twitter.com/michaeldotjames
mailto:lwalter@collab.net
http://seattlescrum.com
http://ScrumMasterChecklist.org
http://www.youtube.com/watch?v=u6XAPnuFjJc

