InterLACE Slide Presentation Instructions

Presenting at Nova Southeastern University's **InterLACE Research Showcase** allows NSU faculty, clinicians, students, and research staff to present their interdisciplinary and/or interprofessional collaborative research in an oral presentation format.

Instructions:

- InterLACE slide presentations will be a <u>maximum of 15 minutes</u> with additional time for questions
- Presenters typically utilize a PowerPoint (PPT) slideshow to organize their presentation, and presenters are encouraged to use the "InterLACE Slide Presentation Template" located in the Materials & Guides dropdown <u>here</u>.
- For tips and advice on conducting the oral presentation to accompany your slides, please consult the "InterLACE Slide Presentation Guide" located in the Materials & Guides dropdown <u>here</u>.

InterLACE Slide Presentation Instructions

<u>Presenters should consider including the following main sections (example slide # indicated below):</u>

- Title slide (Slide 1)
- Description of the interdisciplinary/interprofessional research team (Slide 2)
- Introduction/background (Slides 3-7)
- Methods (Slides 8-9)
- Results (Slides 10-12)
- Conclusions/future goals (Slides 13-15)
- Acknowledgements (Slide 16)
- References (Slide 17)

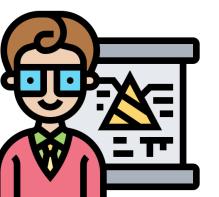
*Presenters can add/remove sections as they see fit, or reorganize this example presentation order, as long as the presentation does not exceed a <u>maximum of 15 minutes</u> (a good plan for a 15-minute presentation is 1 minute per slide, 15 content slides max.)

NSU Florida

Outcompeting Cancer's "Don't Eat Me" Signal to Promote Immune Clearance

Jordan Merritt, Ph.D.¹; Lisa Alvarez, M.D.²; & Sandra Joe, Ph.D.³

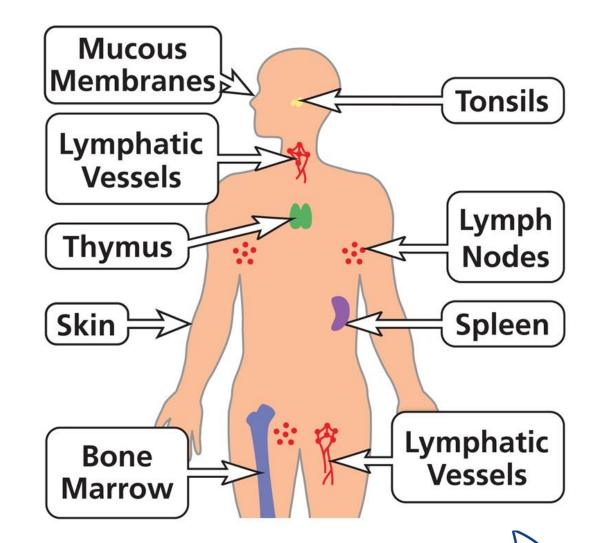
¹Division of Research & Economic Development, ²College of Medicine, ³College of Science Nova Southeastern University


Research Team

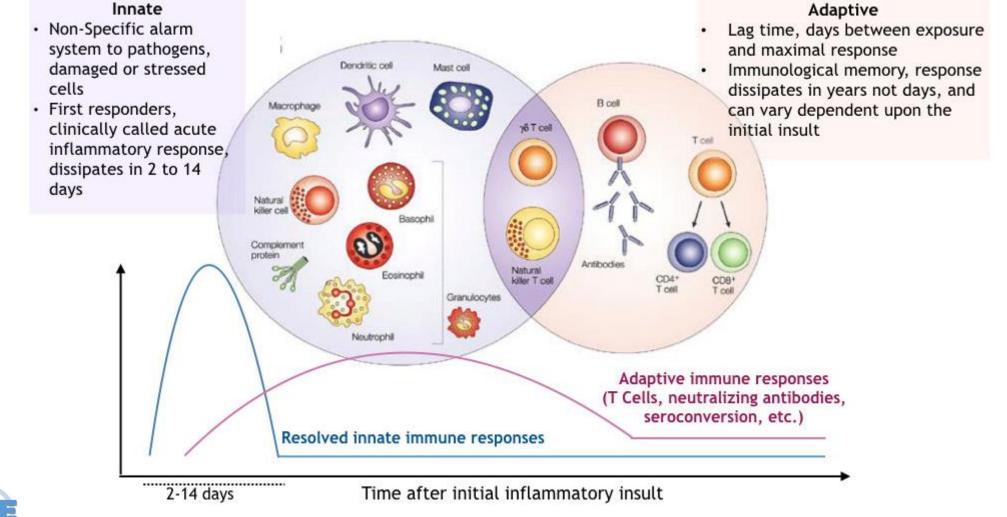
- The *interdisciplinary* & *interprofessional* research team included a diverse set of experts (students, lab techs, clinicians, and research scientists) from multiple departments in the College of Science and Medicine, with skills in:
 - Biochemistry
 - Medicine
 - Morphology
 - Biology

Dr. Sandra Joe Biochemistry

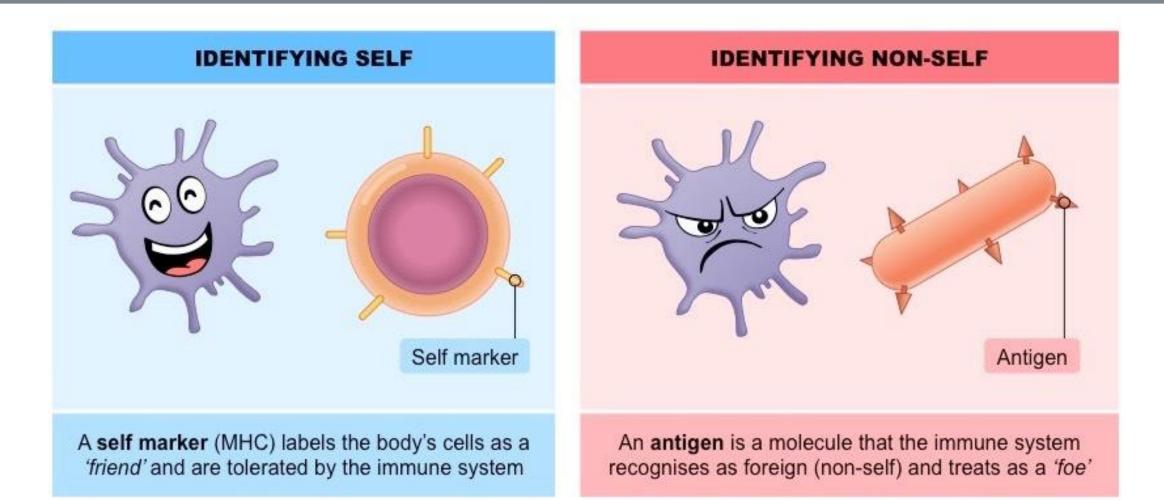
Dr. Lisa Alvarez *Medicine & morphology*



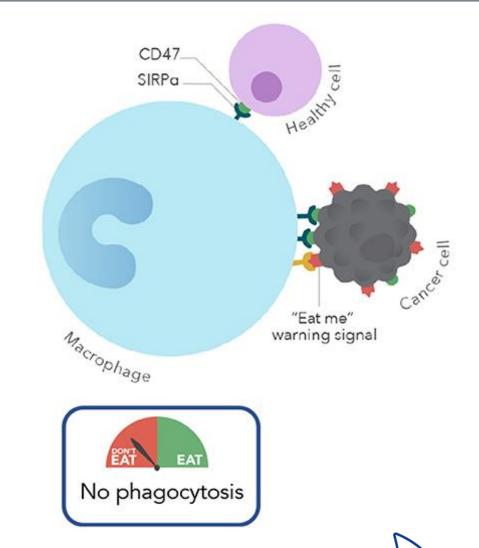
Dr. Jordan Merritt Biology

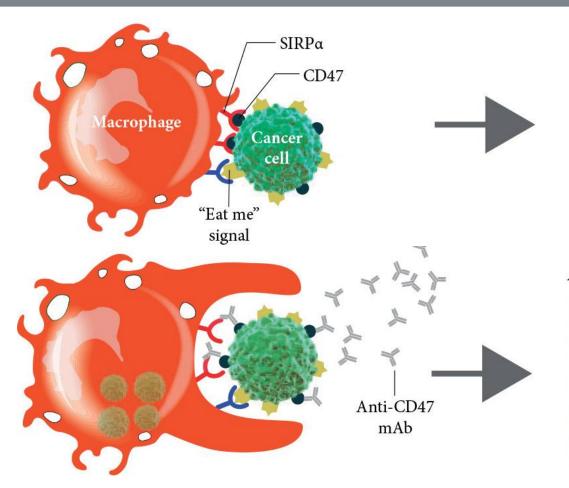

The Immune System

- Function: to prevent and eliminate infection
- Subsystems:
 - Physical barriers
 - Skin, mucus membranes
 - Innate immune system
 - Non-specific
 - 1st line of defense
 - Adaptive immune system
 - Specific, learned
 - Immune memory

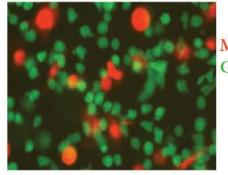


The Immune Response

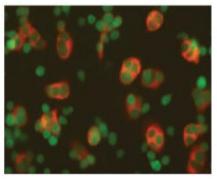

Foreign Antigen vs Self Antigen


Self Receptor Signaling

- Phagocyte "Don't eat me" signals
 - CD47 on healthy cell
 - Signal-regulatory protein alpha (SIRPα) on phagocyte
- Strong signaling
 - Overriding
 - Exploited by cancer cells
 - Abnormal self-cell growth
 - Hijacks the cell machinery: upregulate CD47 on the cell's surface
 - Hides from immune clearance

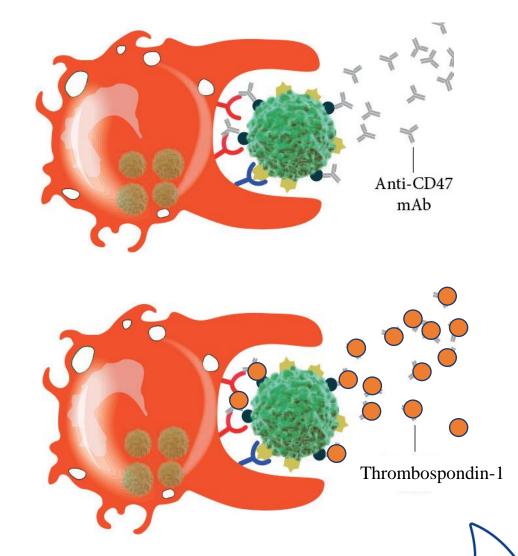


Targeting the "Don't Eat Me" Signal


Control mAb: No Phagocytosis

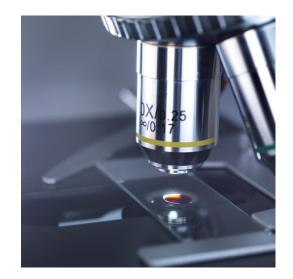
Macrophages Cancer cells

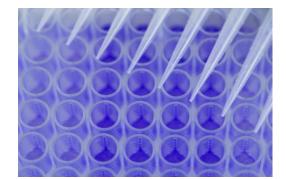
Anti-CD47 mAb: Phagocytosis



Can we outcompete the CD47-SIRP α interaction using soluble reagents?

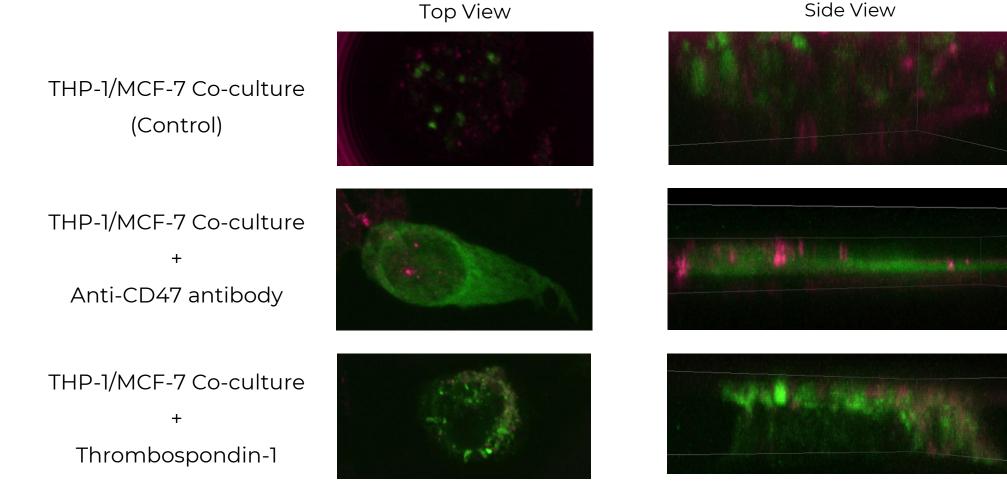
Methodology: Experimental Groups


- Interact innate immune cells (THP-1) with breast cancer cells (MCF-7)
 - 1. Differentiate THP-1 monocyte to M0 macrophage with PMA
 - 2. Label THP-1 macrophage with anti-CD14-PE monoclonal antibody
 - 3. Label MCF-7 cells with CellTracker Deep Red
 - 4. Co-culture cells together
- Experimental Groups
 - 1. THP-1 M0 macrophage
 - 2. THP-1/MCF-7 co-culture
 - 3. THP-1/MCF-7 co-culture + anti-CD47 monoclonal antibodies
 - Block CD47-SIRPα interaction
 - 4. THP-1/MCF-7 co-culture + Thrombospondin-1
 - Outcompete CD47-SIRP α interaction with known CD47 ligand

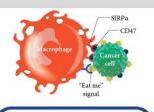


Methodology: Immune Response Assays

- Visualize immune response
 - Confocal Microscope to detect fluorescent labels
 - Looking for co-localization of fluorescent signal and/or internalization of MCF-7 via zstack
- Quantify and characterize immune response
 - Enzyme Linked Immunosorbent Assay (ELISA) to detect immune byproducts created
 - Quantify production of pro-inflammatory cytokine $\mathsf{TNF}\alpha$



Results: Confocal Microscopy


11

Results: Fluorescent Image Analysis

THP-1/MCF-7 coculture

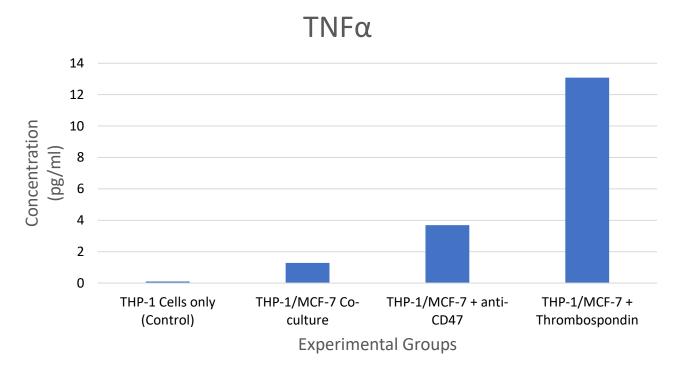
- Rounded THP-1 macrophage
- Disbursed red dye
- MCF-7 cells not clearly insideoutside macrophage

InterLAC:

THP-1/MCF-7 coculture + anti-CD47

- Flat THP-1 macrophage
- Clearly labeled MCF-7 cells
- MCF-7 cells appear to be internalized

Phagocytosis


THP-1/MCF-7 coculture + Thrombospondin-1

- Rounded THP-1 macrophage
- Disbursed red dye
- MCF-7 cells not clearly insideoutside macrophage

Thrombospondin-

Takimoto, C.H. et al. (2019). The Macrophage "Do not eat me" Signal, CD47, is a Clinically Validated Cancer Immunotherapy Target. Annals of Oncology. 30(3). 486-489. https://doi.org/10.1093/annonc/mdz00

Results: ELISA for TNF α

ΤΝFα	Concentration (pg/ml)	Absorbance (OD)
THP-1 Cells only (Control)	0.10465	0.0951
THP-1/MCF-7 Co-culture	1.289645	0.1152
THP-1/MCF-7 + anti-CD47	3.687839	0.1440
THP-1/MCF-7 + Thrombospondin	13.07613	0.2835
within range of 0pg/ml		

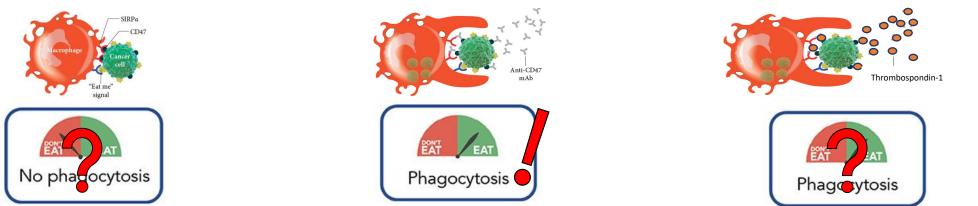
Conclusion: Summary

THP-1/MCF-7 coculture

- MCF-7 cells not clearly insideoutside macrophage
- Slight increase in TNF_α production

Inter AC

2024


THP-1/MCF-7 coculture + anti-CD47

- MCF-7 cells appear to be internalized
- Moderate increase in TNF_α production

THP-1/MCF-7 coculture + Thrombospondin-1

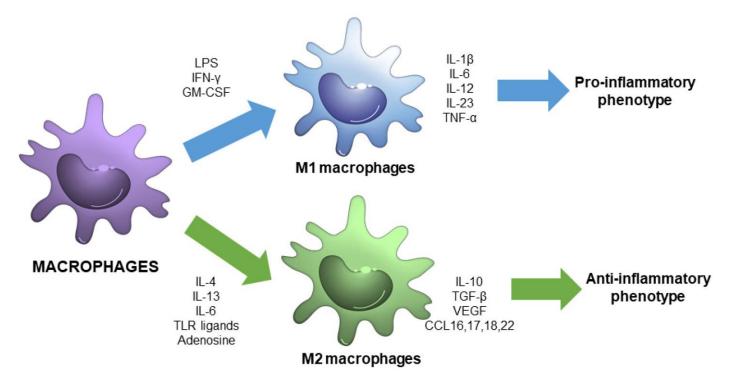
- MCF-7 cells not clearly insideoutside macrophage
- Large increase in TNF_α production

14

Takimoto, C.H. et al. (2019). The Macrophage "Do not eat me" Signal, CD47, is a Clinically Validated Cancer Immunotherapy Target. Annals of Oncology. 30(3). 486-489. https://doi.org/10.1093/annonc/mdz006

Conclusion: Reflections

- Further optimization is needed to determine if soluble reagents can outcompete the CD47-SIRP α interaction
- Areas to improve
 - Optimize co-incubation time
 - Utilize whole cell label instead of surface molecule label (THP-1 cells)
 - Use less culture media to condense immune byproducts for ELISA analysis



Conclusion: Future Studies

Future Studies

- Try other known CD47 ligands (Integrin $\alpha V\beta 3$)
- Use activated THP-1 cells (M1 and M2)

Acknowledgements

Thank you....

- Immunology Tech Lab Students
- Heather Butler, Graduate Teaching Assistant
- FAU Wilkes Honors College
- FAU Jupiter Life Science Initiative
- NSU Division of Research and Economic Development

References

- 1. [Immune System]. Clinical Info NIH: HIV/AIDS Glossary. <u>https://clinicalinfo.hiv.gov/en/glossary/immune-system</u>
- 2. Overview of the Immune System. (2013). National Institute of Allergy and Infectious Diseases. <u>https://www.niaid.nih.gov/research/immune-system-overview</u>
- 3. Parham, P. (2009) Elements of the immune system and their roles in defense. The Immune System. 3rd edition. Chapter 1. Garland Science.
- 4. [Immune Response]. Biotech Support Group. <u>https://www.biotechsupportgroup.com/re-imagining-proteomics-for-developing-precision-medicine-b-s/319.htm</u>
- 5. Timonina, I. Phagocytosis [Online Image]. Shutterstock. <u>https://www.shutterstock.com/image-vector/innate-immunity-adaptive-specific-phagocytosis-infographics-566823208</u>
- 6. [Self vs Non-Self]. BioNinja. <u>https://ib.bioninja.com.au/higher-level/topic-11-animal-physiology/111-antibody-production-and/self-versus-non-self.html</u>
- 7. Chao, M.P., Takimoto, C.H., Feng, D.D., McKenna, K., Gip, P., Liu, J., Volkmer, J., Weissman, I.L., Majeti, R. (2020). Therapeutic Targeting of the Macrophage Immune Checkpoint CD47 in Myeloid Malignancies. *Frontiers in Oncology*. 22(January 2020). <u>https://doi.org/10.3389/fonc.2019.01380</u>
- 8. Takimoto, C.H., Chao, M.P., Gibbs, C., McCamish, M.A., Liu, J., Chen, J.Y., Majeti, R., Weissman, I.L. (2019). The Macrophage "Do not eat me" Signal, CD47, is a Clinically Validated Cancer Immunotherapy Target. *Annals of Oncology. 30*(3). 486-489. <u>https://doi.org/10.1093/annonc/mdz006</u>
- 9. Perez, S., Rius-Pere, S. (2022). Macrophage Polarization and Reprogramming in cute Inflammation: A Redox Perspective. *Antioxidants*. 11(7). 1394. <u>https://doi.org/10.3390/antiox11071394</u>

