Enhanced Shoulder-Surfing Cued-Recall Graphical Password System: Sequential PassPoint (SPP)

Titus D Fofung Ph.D. Emory University tfofung@emory.edu 404-983-7940

Cybersecurity Graduate Research Symposium College of Computing and Engineering Nova Southeastern University October 23rd, 2024

Password Systems

- * Token-based authentication
- * Biometric-based
- * Text-Based
- * Graphical Password
- * Mixed authentication

Graphical Passwords Techniques

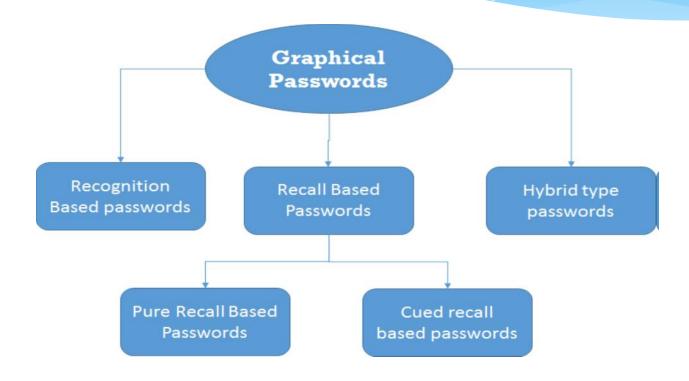


Figure 1: Graphical Password categories (Sonawane et al., 2016)

Motivation

- * Employs images as a basis for creating and recalling passwords.
- * Based on the **Picture Superiority Effect Theory**
 - * images are more memorable than words (Gao et et al, 2010)
- * Image-space
 - * generous surface for solid passwords
 - resistant to guessing (Seelos et et al, 2011)
- more secure and usable against shoulder surfing (Wiedenbeck et al., 2005)
- * Cheaper to implement (Bhand et al., 2015)
- Simplicity and dependability (Bilgi & Tugrul, 2018)

Pass-Point scheme

- * Registration
 - * select a point on an image.
 - tolerance is computed
- * Authentication
 - point must be within the tolerance
 - * in the correct order (Birget et al, 2006).
- * password points not precise enough
 - decreasing the password's robustness
 - brute force attacks (Devlin et al, 2015)
- * "hotspots" problem
 - * many users select similar password points (Schneegass et al, 2015)
- * allows ten trials

Cued Click Points (CCP).

- * one click-point on five Sequenced images (Ambade & Dixit, 2013)
- * restart the password entry
 - * wrong order
- * problems
 - * memorability
 - * 70% 80% of click spots compare to PassPoints (Al-Ameen et al, 2015)
 - * takes more time
- * Limitations
 - plagued with predictability (Al-Ameen et al, 2015)
 - * does not challenge **Spyware attacks** (Bhanushali et al, 2005)

Shoulder Surfing

- * Spying on a proximate target to acquire the information they are exposing or entering (Bhanushali & Shahade, 2013)
- * Shoulder surfing is a growing concern
- * malicious individuals
 - can overhear passwords or sensitive information
 - * direct observation
- * Over the past decade
 - * significant security vulnerability in public logins (Gaikwad, 2017) 7

Reducing Shoulder Surfing Incidents

- * measures to curb shoulder surfing
 - * visual shields
 - using decoy images
 - * Users' awareness

User Memory and Usability Concerns

- * complexity of graphical password systems
 - * impair user **memory** and **usability**
 - * longer authentication times
- * recall may not be as efficient
 - integrating cues and reminders
 - * minimize frustration during login

Sequential PassPoint (SPP) - Registration

- * user enters the username
- user is passed images
- user chooses two images they like
- * user selects three locations in order
- on each of the two images
- * user affirms the clicked locations
- images are added to the user's profile
- * username and other research information
- user selects any two additional images
- * these are decoys
- * must note the order of the password images
- * must recognize the first image

SPP Flowchart

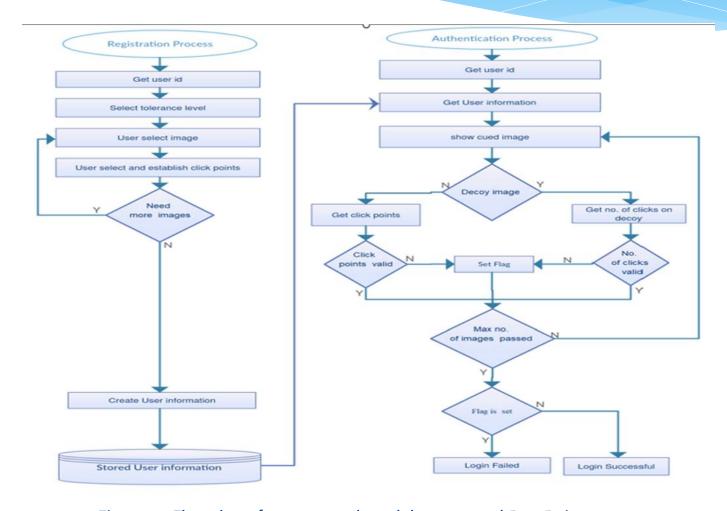


Figure 2: Flowchart for proposed model sequenced PassPoint

SPP Authentication Phase

- * authentication phase consists of the following steps.
 - * User type in a username
 - * user is passed four images in random order.
 - user makes three phony clicks on all the decoy images on consistent
- passed image is the one the user selected during registration
 - * user selects the registered ordered click points
- * real (password) image in the registration order
 - * click the three password points in order
- * real (password) image is not in the registration order
 - * click the three password points in reverse order
- decoy image
 - click any three points in a reasonably consistent manner or order.

SPP Features

- images are constantly shuffled
- * three ordered click points on the two images
- * three random click points on the two decoy
- * images in random order
 - * robustness of SPP
 - increases memorability
 - * reduces shoulder-surfing
 - * attacker with a video recorder readily
 - Spyware hindered
 - * Dynamic nature

Size of Password Space

Text-based passwords

- Length six using the 64-character alphabet
- lowercase are considered
- each 6 could be any of the 64 characters
- $(64)^6 = 6.9 \times 10^{10}$ passwords

SPP

- image size of 500 x 500
- grid is discretized into a square size of 50 x 50 pixels
- approximates to about (500 x 500) / (50 x 50) = **100 grid squares**
- six clicks on two images
- $P(n, r) = P(100,3) = (100!)/(100-6)! = 1.6 \times 10^5$ passwords one image
- $(P(100,3))^4 = 2.6 \times 10^{20}$ passwords four images
- $2((P(100,3))^4) = 1.3 \times 10^{21}$ passwords four images for reverse order

Comparing Possible Passwords

Table I. Comparison of the Number of Possible Passwords

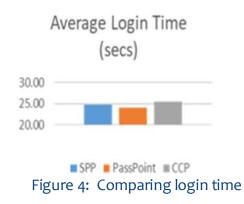
System	N = 5	N = 6	N = 7	N = 8
Text-based password	9.1 x 10 ⁸	5.4 x 10 ¹⁰	3.1 X 10 ¹²	1.8 x 10 ¹⁴
Graphical password (PassPoint)	9.0 x 10 ⁹	8.6 x 10 ¹¹	8.1 x 10 ¹³	7.5 x 10 ¹⁵
Graphical password (CCP)	1.0 X 10 ¹⁰	1.0 X 10 ¹²	1.0 x 10 ¹⁴	1.0 x 10 ¹⁶
Proposed SPP system (perceived by hacker)	2.1 x 10 ¹⁹	1.3 x 10 ²¹	1.8 x 10 ²⁴	1.8 x 10 ²⁴

Ethical issues

- * no identifiable information collected
- * all results were reported as an aggregate
- ensured data security for the integrity of the research
 - * only the researcher had access to this data
- * participants
 - voluntarily participated
 - withdraw from the research at any time
 - * aware of the ultimate purpose of the research
- * carried out
 - * in a comfortable environment
 - in a professional manner

Validity and reliability

- * using two pictures for different graphical passwords
 - * similar pictures employed for two sets of the PassPoints
- * issues about content of the images
 - content of two related images
 - * relevant or not similar
 - user may get confused


Usability

- * time spent on the authentication process was measured
 - * from the beginning of the first click on the first image to the last click on the last image
 - * first training login with the first login
- * experimental results
 - * all participants could operate the login process

Registration Phase

Table IV. Training/Authentication Phase

		SPP			PassPoint			ССР		
		Training (Trial 1)	. •	Login (Trial 2)		Login (Trial 1)	Login (Trial 2)		Login (Trial 1)	Login (Trial 2)
Accounts		Time(s)	Time(s)	Time(s)	Time(s)	Time(s)	Time(s)	Time(s)	Time(s)	Time(s)
	1	40.00	27.00	26.00	30.00	24.00	23.00	37.00	24.00	24.00
	2	35.00	26.00	25.00	26.00	23.00	24.00	31.00	26.00	24.00
	3	34.00	24.00	25.00	26.00	22.00	23.00	29.00	27.00	28.00
	4	37.00	26.00	26.00	29.00	25.00	24.00	28.00	26.00	26.00
	5	39.00	27.00	24.00	30.00	26.00	26.00	30.00	28.00	27.00
	6	37.00	23.00	23.00	27.00	24.00	24.00	27.00	24.00	24.00
Mean		37.00	25.50	24.83	28.00	24.00	24.00	30.33	25.83	25.50
Median		37.00	26.00	25.00	28.00	24.00	24.00	29.50	26.00	25.00
Standard Deviation		2.28	1.64	1.17	1.90	1.41	1.10	3.56	1.60	1.76

Registration Phase

Table III. Registration Phase Times(SECS).

	SPP	PassPoint	ССР
	Registration (Trial 1)	Registration (Trial 1)	Registration (Trial 1)
Accounts	Time(s)	Time(s)	Time(s)
1	70.00	67.00	76.00
2	73.00	69.00	73.00
3	80.00	67.00	72.00
4	75.00	70.00	74.00
5	73.00	71.00	76.00
6	76.00	70.00	77.00
Mean	74.50	69.00	74.67
Median	74.00	69.50	75.00
Standard Deviation	3.39	1.67	1.97

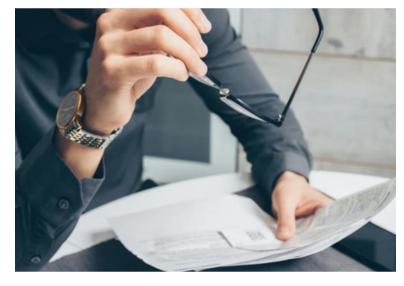



Figure 3: Comparing average registration time

Results and Conclusion

- * SPP password scheme had more password space in Table I
 - * multiple images were involved
- * complexity of the theory of password creation
 - ordered sequences
 - reverse click orders are challenging
- * CCP and PassPoint schemes
 - * more vulnerable
 - * more shoulder surfing attacks

Results and Conclusion

- * SPP behaved as anticipated since shoulder-surfing attacks
 - * 12 perceived points to recall on the four images
 - less susceptible to shoulder surfing
- * SPP scheme most robust
 - less than 30% break-in via shoulder-surfing see Fig. 3.
 - * not susceptible to brute force attacks
- * SPP and CCP
 - * similar in their success rates when they were asked to log in four consecutive times (Fig. 2)
- system's usability was realized in Table III and Table IV

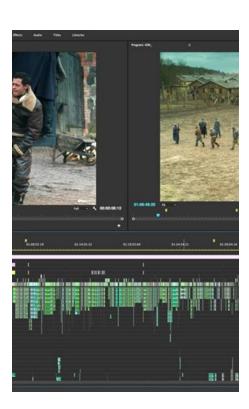
Comparing Shoulder Surfing Attacks

Table II. Shoulder Surfing % Success in 4 Trials

	SPP	PassPoint	ССР	
Account s	Security (%)	success rate Security succe	ess rate Security succe	ss rate
1	0.00	20.00	20.00	
2	0.00	20.00	40.00	
3	0.00	40.00	0.00	
4	0.00	20.00	20.00	
5	0.00	20.00	40.00	
6	0.00	40.00	20.00	
Mean	0.00	26.67	23.33	

Figure 3: Comparing shoulder surfing success

Discussion and Conclusion


- * analysis presented
 - * theoretical
 - * empirical
- * three essential password factors
 - * memorability
 - * usability
 - * security (Xiaoyuan et et al, 2005)
 - * SPP
 - * has met all these aspects at different levels
 - * SPP
 - * increase the usability of graphical password systems

Discussion and Conclusion

- * susceptibility to attacks
 - someone who has learned the scheme thoroughly
 - * Watch the same user log in several times
- * problems
 - computational overhead
 - user acceptability should also be evaluated
 - * more user participants

Discussion and Conclusion

- SPP password scheme
 - more password space
 - complexity of the theory of password creation
 - less susceptible to shoulder surfing
 - ordered sequences and reverse click orders
 - challenging to determine
 - brute force attack
 - not vulnerable
 - Issues
 - Image storage
 - login duration
 - registration

Future Work

- * SPP will increase the usability
 - * graphical password systems across different domains
 - system login and logout processes
 - * banking
 - * web locking systems
 - folder locking systems
 - More evaluation
 - * computational overhead
 - * user acceptability
 - * user participation

Future Work

- future studies should investigate
 - user adaptation to SPP over time
 - effectiveness in diverse real-world scenarios
 - combining SPP with emerging technologies
 - biometric interfaces
 - enhanced security solutions.
- SPP can be validated with a varied number
 - registration images
 - decoy images
 - click points

References

- * Al-Ameen, M. N., Fatema, K., Wright, M., & Scielzo, S. (2015, July). The impact of cues and user interaction on the memorability of system-assigned recognition-based graphical passwords. In Symposium on Usable Privacy and Security (SOUPS) (pp. 22-24).
- * Alt, F., Schneegass, S., Shirazi, A. S., Hassib, M., & Bulling, A. (2015, August). Graphical passwords in the wild: Understanding how users choose pictures and passwords in image-based authentication schemes. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services (pp. 316-322). ACM.
- * Birget, J.C., Hong, D., and Memon, N. (2006). Graphical Passwords Based on Robust Discretization. IEEE Transactions on Information Forensics and Security 1(3), pp. 395-399, 200.
- * Devlin, M., Nurse, J. R., Hodges, D., Goldsmith, M., & Creese, S. (2015, August). Predicting graphical passwords. In International Conference on Human Aspects of Information Security, Privacy, and Trust (pp. 23-35). Springer, Cham.
- * Seelos, F. P., Murchie, S. L., Humm, D. C., Barnouin, O. S., Morgan, F., Taylor, H. W., ... & CRISM Team. (2011, March). CRISM Data Processing and Analysis Products Update—Calibration, Correction, and Visualization. In Lunar and Planetary Science Conference (Vol. 42, p. 1438).
- * Wiedenbeck, S., Waters, J., Birget, J. C., Brodskiy, A., & Memon, N. (2005, July). Authentication using graphical passwords: Effects of tolerance and image choice. In Proceedings of the 2005 symposium on Usable privacy and security (pp. 1-12). ACM.
- * Xiaoyuan, S., Ying, Z., & Owen, G. S. (2005, December). Graphical passwords: a survey. In 21st Annual Computer Security Applications Conference, IEEE Computer Society Washington, DC, USA (pp. 463-472).
- * Bhanushali A, Mange B, Vyas H, Bhanushali H, Bhogle P, Comparison of graphical password authentication techniques, International Journal of Computer Applications, vol. 116, no. 1, 2005.
- * Bhong V, and Shahade V, "Authentication using graphical passwords: effects of tolerance and image choice," International Journal for Engineering Applications and Technology, vol. 5., pp. 239-245, 2013.
- * Ambade N. T., and Dixit A, Graphical Passwords Authentication: A Survey. IJCSMC, vol. 4, no. 2, pp. 247-254, 2015
- * Wiedenbeck S., Waters J., Birget J. C., Brodskiy A, and Memon, Authentication using graphical passwords: Effects of tolerance and image choice, ACM Proceedings of the 2005 symposium on Usable privacy and security, pp. 1-12, July 2005.

END

Thanks!!!

END

Questions