How has Computer-Assisted Qualitative Data Analysis Software affected qualitative research?

Megan Woods, PhD, Rob Macklin, PhD, Gemma Lewis, PhD, University of Tasmania, Australia
Context and rationale for the research

Computer-Assisted Qualitative Data Analysis software (CAQDAS) packages

• Specialised programs for analysing qualitative data
 Eg NUD*IST, N Vivo, Atlas ti, HyperResearch, QUALRUS, MaxQDA, QDA Miner, the Ethnograph, Leximancer, Transana

• Now an established tool for qualitative research
 – In use since early 1980s
 – Widespread usage
 – Sometimes divisive
 • Software users and non-users
 • Allegiances to specific programs
 • Advocates and critics
Questions and controversies about CAQDAS

• What can (or can’t) be done with programs?
 (c.f. Seidel and Clark 1984; Muhr 1991; Di Gregorio 2000; Bazeley 2002; Hutchinson, Johnston and Breckon 2010)?

• Are computer-assisted analyses more rigorous, transparent, credible or trustworthy?
 (cf Tallerico 1991; Dainty et al 1998; Bong 2002; Smyth 2006)

• How does using software change the process and experience of analysis?
 (c.f. Richards and Richards 1987; Kelle 1995; Weitzman 1999; Gilbert 2002; Davidson and Skinner 2010)

• Do programs ‘impose’ methodologies or ‘drive’ the analysis?
 (c.f. Bryman and Burgess 1994; Lee 2002; Seror 2005)
Questions and controversies about CAQDAS

• How do we choose between programs?
 – Are programs comparable in their features and functions? (cf The KWALON 2010 experiment)
 – Does using (any or all) CAQDAS programs compromise creative freedom? (cf DeNardo & Levers 2002)

• How do we guide new researchers through these choices? (cf Kaczynski 2003)
Our research interest and focus

Our focus in this study:
• How has the technology evolved?
• What implications has this had for qualitative research practices for
 - Creating and collecting data?
 - Analysing data?
 - Presenting data?

Our research interest:
• Computer-assisted qualitative data analysis as a form of ‘professional practice’ utilising
 - Technical reasoning and wisdom (techne)
 - Practical reasoning and wisdom (phronesis)
• Experiential learning and collective wisdom
Research method

Analysis of methodological literature from 1980 to 2012

Dataset generated by purposive sampling:

- Initial search for literature for
 - the terms CAQDA, CAQDAS, “qualitative data analysis software”, “qualitative data analysis program” and “computer-aided qualitative data analysis”.
 - names of specific programs eg NUD*IST, Ethnograph etc.

- Subsequently supplemented by program descriptions from manufacturers

Final data set: 163 items
Research method

Analytical strategy:
- Reviewed literature in chronological order to identify debates and trace discussions over time
- Read and wrote memo for each article detailing key points and arguments relevant to research question
- Intended to use N Vivo (version 10) to
 - Record notes about each publication
 - Develop data categorisation system reflecting discussions of
 - Program features
 - techniques supported by programs
 - Develop conceptual model illustrating relationships
• Subsequently used Word to chart the data, N Vivo to develop conceptual model
Chart: exemplar entry

<table>
<thead>
<tr>
<th>Program feature</th>
<th>Program</th>
<th>Source detailing</th>
<th>Applications</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handles coding directly from audio files</td>
<td>Atlas ti</td>
<td>Evers 2011</td>
<td>Working directly with digital forms/audio recording enables retention of tone etc</td>
<td>Lee 2002</td>
</tr>
<tr>
<td></td>
<td>N Vivo 8</td>
<td>Evers 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HyperRESEARCH</td>
<td>Evers 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qualrus</td>
<td>Man. Website 2009</td>
<td></td>
<td>Evers 2011</td>
</tr>
<tr>
<td></td>
<td>Transana</td>
<td>Man. Website 2013</td>
<td>Reduces, eliminates need for transcription</td>
<td></td>
</tr>
</tbody>
</table>
Historical development

• 1970s-early 1980s: introduction of computers to support qualitative analysis of data

• Mid 1980s to mid 1990s: introduction of dedicated CAQDAS programs

• Development of original CAQDAS programs
 - Refinement of original features and functionality
 - Introduction of additional features and functionality

• Development of additional programs
Features for data collection and creation

• Files types/ data sources that can be accommodated by programs
 – Text files eg transcripts of interviews
 • Initial formats – plain text; later formats - Rich text, HTML and PDF
 – Audio and video files
 – Pre-coded survey data
 – Data from online technologies such as web-based communication forums eg Twitter, Facebook
 – Geo data

• Creating data files
 – Text files: Initially created in WP then imported, Later created in programs with text editing functionality and transcription functionality
 – Other files types: create in other programs then import
Impact on data collection and creation

• Formatting of data files
 – Initially:
 • Structure of source documents
 • Formats of text files
 • Size of text unit
 • Number lines of text to create ‘addresses’ for coded sections
 – Subsequently
 • Conversions of formats for use in software programs

• Volume of data collected
• Types of data being used
• Integration and compatibility of programs
Features for data analysis

Marking up data with codes, tags or symbols

- By researcher assigning tags
 - Select text, assign tag
- By program assigning tags (Autocoding)
 - Specified by researcher
 - Specified by program

Indexing, categorising data

- Initially used separate database management programs as file directory
- Subsequently, indexing systems in programs to categorise data
- Editing coding/ indexing systems after applied
- Cross indexing of data
Impact on data analysis

• Retrieval of coded material
 – According to code assigned (by researcher or program)
 – For review in original context

• Identification of ‘key’ concepts

• Boolean searching and linking codes to:
 • Retrieve text fitting set parameters
 • Develop propositional relationships regarding concepts
 and participant characteristics
 • Investigate extent of data support for hypotheses

• Conversion of data for subsequent analysis
 – Eg converting codes into variables
Features for data analysis

Memoing
- Initially: noted in memos
- Subsequently: hyperlinking of memos to data and other elements (annotating original data source)

Integration of analyses by team members
- Initially: by merging projects
- Subsequently:
 - By supporting multiple users in project
 - By enabling simultaneous working
 - Restricting levels of access

Calculation of coding consistency scores
 Eg percentage agreement between coders, Krippendorf’s alpha
Impact on data analysis

• Logging of project decisions, actions, outcomes

• Documenting chain of evidence between data and conclusions

• Establishment of ‘team rules’ for analysis

• Determining consistency of coding approaches

• Objective determination of coding similarity
Presentation of data

• Data display / visualisations
 – In imported format eg original transcript
 – Data to which code is attached (eg text units)
 • Reviewing content of data categories
 • Coding reports
 • Coding stripes
 – Coding matrices
 • Counts of text
 • displaying text in cells
 – Hierarchical systems of major and subsidiary data categories
 • Illustrating data topics eg responses given to question
Presentation of data

• Data display / visualisations
 – Illustrations of networks
 • Linkages between concepts
 • Linkages between sources, project items
 – Graphs and charts
 – Tag clouds
 – Key words in context
 • Word trees
 • Clustering
 • Proximity and sequence with other terms
Impact on data presentation

• Presentation in original context

• Illustration of co-occurrences of codes

• Demonstration of data support for propositions
 – Similarity and difference across groups
 – Co-occurrence of concepts

• Demonstration of face validity
 – of coding
 – of conclusions

• Illustration of dynamic analytic processes for handling data
Models of CAQDAS-supported research approaches

- Homogenisation of program features and functions
- Expanded functionality

Models of CAQDAS-supported research approaches

1. Using CAQDAS to replicate 'manual' approaches
 - Create electronic versions of hard copy data files
 - Develop electronic equivalents of manual analytic techniques
 - Electronically present data as with manual techniques

2. Using CAQDAS to undertake previously 'impractical' approaches
 - Examine types and volumes of data 'too hard' to manage without CAQDAS support
 - Undertake 'theoretically possible but impractical' analyses
 - Expanded options for data presentation incl multidimensional presentation

3. Using CAQDAS to develop and execute CAQDAS-specific approaches
 - Integration of data from multiple technologies
 - Analytical techniques for which computer functionality and support is essential
 - Presentation techniques for which computer functionality and support is essential
Next questions….

• How do the current technologies influence creative freedom?
 – What techniques do they support (or not)?
 – What technical wisdom is required?
 – What practical wisdom is developed?

• At what point do technical requirements dominate?
 – In research planning?
 – In research practice?

• What implications does this have for notions of ‘professional practice’?
Next questions…

• Which features, techniques and forms of wisdom are
 – Program-specific?
 – Common across programs?
 – Common across research approaches?
 – Common across user groups?

• How can we best learn from user experiences?
 – What do we want researchers to explain, and how?
 – How do we want people to validate their methodologies?

• How do we best teach new users to develop their wisdom?
References

References

References

