Nova Southeastern University Office of Academic Affairs Search NSU Site Map Nova Southeastern University
President's Faculty R & D Grant 
Home
Committees, Councils
  and Boards
Faculty Policy Manual
NSU Scholarly Journals
Professional Journals
Prof. Memberships
Academic Policies & Procedures
Provost's Research and Scholarship Award
President's Faculty
 R & D Grant
PFRDG Application Review Process by NSU Librarians
Office of Academic Quality, Assessment, and Accreditation
Contact Us

Print this page  

 


With a focus on learning, we employ a range of strategies to support innovation, collaboration across centers, and university-wide discussion and decision-making

 

Thirteenth Annual Grant Winners 2012-2013

Title

In Vitro Evaluation of an Injectable Tissue-Engineered Nanocomposite Scaffold

Dean

Robert Uchin, D.D.S. (HPD-DEN)
Andrés Malavé, Ph.D. (HPD-PHR)

Faculty and Students

Umadevi Kandalam, Ph.D. (HPD-DEN)
Michelle A. Clark, Ph.D. (HPD-PHR)
Hossein Omidian, Ph.D. (HPD-PHR)
Maria A. Duarte, Ph.D. (HPD-DEN)
Adam E. Saltz, B.S. (FAR)

Abstract

In Vitro Evaluation of an Injectable Tissue-Engineered Nanocomposite ScaffoldCleft palate is the second most common congenital malformation in the US. It is formed due to failure of closure of two palates of the skull that forms the hard palate. Reconstruction of bony part in hard palate is important to preserve normal facial growth. Cleft palate repair requires extensive surgical procedures using bone graft techniques, which is associated with an extended healing time. The objective of this research is to develop a novel injectable stem cell-based scaffold system for the repair and regeneration of bone with special reference to cleft palate. Injectable scaffolds, as carriers of bioactive materials, can fill the 3 D shapes of the bony cavities in situ without any voids and thus will facilitate uniform bone formation, minimize infections and repeated surgeries. The proposed composite scaffold system is a combination of mesenchymal stem cells derived from bone marrow (BMSCs) and alginate/nanocrytalline hydroxyapitite (nHAP)/demineralized bone matrix (DBM). DBM is a natural bone graft material which contains growth factors such as bone morphogenic proteins. DBM scaffold is moldable/ injectable at the site of defect, sets in situ, and supports osteogenesis. Alginate is a natural biomaterial widely used as microcarriers of bioactive cells and molecules. Mesenchymal stem cells embedded in alginate in combination with nHAP provides necessary environment for cell proliferation and enhanced osteogenesis. This project has two specific aims: 1) to characterize the alginate/nHAP/DBM scaffold in terms of its properties such as paste consistency, injectability, setting time and mechanical strength 2) to investigate the viability and osteogenic differentiation of BMSCs encapsulated in alginate/nHAP loaded on to DBM scaffold. The outcome of the project will provide a cell-based therapeutic system for bone tissue engineering.