Matrix Inequalities by Means of Block Matrices

Fuzhen Zhang

Department of Math, Science and Technology
Nova Southeastern University, Fort Lauderdale, Florida 33314, USA

We first show a weak log-majorization inequality of singular values for partitioned positive semidefinite matrices which will imply some existing results of a number of authors, then present some basic matrix inequalities and apply them to obtain a number of matrix inequalities involving sum, ordinary product and Hadamard product.

AMS classification: 15A45

Keywords: Eigenvalue inequality; Hadamard (Schur) product; matrix inequality; positive semidefinite matrix; singular value inequality; unitarily invariant norm; weak log-majorization

1. INTRODUCTION

One of the most useful tools for deriving matrix inequalities is to utilize block matrices; usually they are 2×2 in most applications. In this paper, we shall show a weak log-majorization inequality of singular values for partitioned positive semidefinite matrices, from which some classical and recent results of Bhatia and Kittaneh [4], Wang, Xi and Zhang [12], and Zhan [13] will follow. We shall also develop a new technique that is complementary to the Schur complement; while by making use of Schur complements, a number of determinantal, trace, and other inequalities are exhibited in [16]. With the new technique we add more inequalities to these in [16].

We denote the eigenvalues of an $n \times n$ complex matrix X by $\lambda_i(X)$, $i = 1, 2, \ldots, n$, and arrange them in modulus decreasing order $|\lambda_1(X)| \geq |\lambda_2(X)| \geq \cdots \geq |\lambda_n(X)|$.

The singular values of an $m \times n$ matrix X are denoted by $\sigma_1(X), \ldots, \sigma_n(X)$ and are also arranged in decreasing order. Note that $\sigma_i(X) = \lambda_i(|X|)$ for each i, where $|X| = (X^*X)^{1/2}$. We further write

$$\lambda(X) = (\lambda_1(X), \lambda_2(X), \ldots, \lambda_n(X)), \quad \sigma(X) = (\sigma_1(X), \sigma_2(X), \ldots, \sigma_n(X)).$$

The leading principal $k \times k$ submatrix of a matrix X is denoted by $[X]_k$.

1 The work was supported in part by the Nova Faculty Development Funds.

2 E-mail: zhang@nova.edu
Write $X \geq 0$ if X is a positive semidefinite matrix and $X \geq Y$ if X and Y are Hermitian matrices such that $X - Y \geq 0$. The strict inequality $X > 0$ denotes the positive definiteness of X. Let $X \circ Y = (x_{ij}y_{ij})$ be the Hadamard (Schur) product of matrices X and Y of the same size and X^* the conjugate transpose of X.

For complex vector $x = (x_1, x_2, \ldots, x_n)$, we denote $|x| = (|x_1|, |x_2|, \ldots, |x_n|)$, and for vectors $x = (x_1, x_2, \ldots, x_n)$ and $y = (y_1, y_2, \ldots, y_n)$ with nonnegative components in decreasing order, we write $\log x \prec_w \log y$ to mean
\[
\prod_{i=1}^{k} x_i \leq \prod_{i=1}^{k} y_i, \quad k = 1, 2, \ldots, n.
\]
As is well known, $\log x \prec_w \log y$ yields $x \prec_w y$ (see, e.g., [3, p. 42]). The latter means
\[
\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i, \quad k = 1, 2, \ldots, n.
\]
The subscript “w” is dropped off in either \prec_w if equality holds when $k = n$.

2. A WEAK LOG-MAJORIZATION INEQUALITY

Theorem 1 Let A, B, and C be complex matrices such that
\[
\begin{pmatrix}
 A & B \\
 B^* & C
\end{pmatrix} \geq 0,
\]
where A is $m \times m$, C is $n \times n$, and B is $m \times n$. Let $\text{rank}(B) = r$. Then
\[
\log \sigma(B) \prec_w \log \mu,
\]
where $\mu = (\mu_1, \mu_2, \ldots, \mu_n)$ with $\mu_i = \max\{\lambda_i(A), \lambda_i(C)\}$ if $i \leq r$, 0 otherwise. Thus
\[
\sigma(B) \prec_w \mu.
\]
And if A, B, and C are all square of the same size, then
\[
\log |\lambda(B)| \prec_w \log \mu.
\]

Proof. We may assume that $B \neq 0$. Let $B = UDV^*$ be a singular value decomposition of the matrix B, where $D = \text{diag}(\sigma_1(B), \ldots, \sigma_r(B))$, and U and V are $m \times r$ and $n \times r$ partial unitary matrices, respectively, i.e., $U^*U = V^*V = I_r$. Then
\[
\begin{pmatrix}
 U^* & 0 \\
 0 & V^*
\end{pmatrix}
\begin{pmatrix}
 A & B \\
 B^* & C
\end{pmatrix}
\begin{pmatrix}
 U & 0 \\
 0 & V
\end{pmatrix}
= \begin{pmatrix}
 U^*AU & D \\
 D & V^*CV
\end{pmatrix} \geq 0.
\]
Taking the leading principal \(k \times k \) submatrix of each block, \(1 \leq k \leq r \), we have

\[
\begin{pmatrix}
[U^*AU]_k & [D]_k \\
[D]_k & [V^*CV]_k
\end{pmatrix} \geq 0.
\]

It follows that, by taking determinant for each block,

\[\det[D]_k^2 \leq \det([U^*AU]_k) \det([V^*CV]_k). \]

Or equivalently, for each \(1 \leq k \leq r \),

\[
\prod_{i=1}^{k} \sigma_i(B)^2 \leq \prod_{i=1}^{k} \lambda_i([U^*AU]_k) \lambda_i([V^*CV]_k).
\]

By the eigenvalue interlacing theorem (see, e.g., [17, p. 222–224]), we arrive at

\[
\prod_{i=1}^{k} \sigma_i(B)^2 \leq \prod_{i=1}^{k} \lambda_i(A) \lambda_i(C) \leq \prod_{i=1}^{k} \mu_i^2.
\]

The desired inequality (1), thus (2), follows immediately by taking square roots. (3) is similarly obtained by letting \(B = WTW^* \), where \(T \) is an upper triangular matrix with diagonal entries \(\lambda_1(B), \lambda_2(B), \ldots, \lambda_n(B) \) and \(W \) is unitary. ■

Corollary 1 Let \(A \geq 0, \ B \geq 0 \) be of size \(n \times n \). Then for any \(z \in \mathbb{C} \)

\[\log \sigma(A - |z|B) \preceq_w \log \sigma(A + zB) \preceq_w \log \sigma(A + |z|B). \]

(4)

Proof. For the second part, by (1), it is sufficient to notice that

\[
\begin{pmatrix}
A + |z|B & A + zB \\
A + z^*B & A + |z|B
\end{pmatrix} \geq 0;
\]

whereas the first part is proven by using the elementary inequality (see [12] or [13])

\[|1 - |z|| \leq |1 - z| \leq 1 + |z|. \] ■

(4) is to appear in [13]. It refines the majorization inequality [12]

\[\log \sigma(A - B) \preceq_w \log \sigma(A + B) \]

and implies the weaker inequality for unitarily invariant norms \(\| \cdot \|_{ui}[4] \)

\[\|A - |z|B\|_{ui} \leq \|A + zB\|_{ui} \leq \|A + |z|B\|_{ui}. \]

We note that the following matrix inequalities do not hold in general:

\[|A - |z|B| \leq |A - zB| \leq A + |z|B. \]
For a counterexample, take $z = i$,
\[A = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}. \]
Then $\lambda(|A - B|) = (3, 3)$, $\lambda(|A + iB|) = (6.951 \cdots, 1.294 \cdots)$, and $\lambda(A + B) = (9, 1)$.

Corollary 2 Let A be any $n \times n$ complex matrix. Then
\[
\log |\lambda(A)| \prec \log \sigma(A). \tag{5}
\]

Proof. By (3), it is sufficient to notice that
\[
\begin{pmatrix}
|A^*| & A \\
A^* & |A|
\end{pmatrix} \geq 0. \quad \blacksquare
\]

Inequality (5) is the well known Weyl's inequality (see, e.g., [7, p. 171]).

Remark 2.1: Note that μ in (1) and (3) cannot be replaced by $\sigma(A)$ or $\sigma(C)$.

Remark 2.2: In the proof of the theorem, we used the result [9, p. 142] that
\[
\begin{pmatrix}
A & B^* \\
B & C
\end{pmatrix} \geq 0 \quad \Rightarrow \quad \det(B^*B) \leq \det A \det C,
\]
where A, B, and C square matrices of the same size. (This does not hold in general if B is rectangular.) Using this result, one can also give a very simple proof to the determinantal inequality [9, p. 144]: Let λ_i be complex numbers and $A_i \geq 0$. Then
\[
|\det(\lambda_1 A_1 + \cdots + \lambda_k A_k)| \leq \det(|\lambda_1|A_1 + \cdots + |\lambda_k|A_k).
\]
This is because
\[
\sum_{i=1}^{k} \begin{pmatrix}
|\lambda_i|A_i & \lambda_iA_i \\
\lambda_iA_i & |\lambda_i|A_i
\end{pmatrix} \geq 0.
\]

3. SOME BASIC INEQUALITIES

Block matrices in the form \[
\begin{pmatrix}
H & K \\
K & H
\end{pmatrix}
\] have played a pivotal role in proving some matrix inequalities. We shall give some elementary matrix inequalities by applying a result on the block matrix to some partitioned positive semidefinite matrices and then to further derive inequalities on sum, ordinary and Hadamard products.

Let H and K be (complex) Hermitian matrices of the same size. Then
\[
\begin{pmatrix}
H & K \\
K & H
\end{pmatrix} \geq 0 \quad \Leftrightarrow \quad H \geq \pm K. \tag{6}
\]
This is seen by noticing the matrix identity via nonsingular congruence (similarity)

\[
\left[\frac{1}{\sqrt{2}} \begin{pmatrix} I & -I \\ I & I \end{pmatrix} \right] \left(\begin{pmatrix} H & K \\ K & H \end{pmatrix} \right) \left[\frac{1}{\sqrt{2}} \begin{pmatrix} I & I \\ -I & I \end{pmatrix} \right] = \begin{pmatrix} H - K & 0 \\ 0 & H + K \end{pmatrix}.
\]

Obviously the eigenvalues of the block matrix in (6) are those of \(H \pm K \). A proof of (6) for the real case is given in [5] via quadratic forms, and a characterization of the matrices \(K \), which comprise a convex set, for the given \(H \) by trace inequalities is presented in [2]. A majorization inequality of the eigenvalues of the matrices \(H \) and \(K \) in (6) is seen in [14]:

\[
|\lambda(K)| \prec_w \lambda(H),
\]

which is strengthened as, by Theorem 1,

\[
\log |\lambda(K)| \prec_w \log \lambda(H),
\]

while the (stronger) eigenvalue pairwise dominant inequalities

\[
|\lambda_i(K)| \leq \lambda_i(H)
\]

do not hold for all \(i \), though \(|\lambda_1(K)| \leq \lambda_1(H) \). (Thus \(H \geq \pm K \nRightarrow H \geq |K| \).

Moreover, by using the block matrix in (6) and the Albert theorem [1], one has

\[
H \geq \pm K \Rightarrow K = HH^+K = KH^+H,
\]

where \(H^+ \) is the Moore-Penrose generalized inverse of \(H \).

We now give our basic inequalities that easily follow from (6).

Theorem 2 Let \(A, B, \) and \(C \) be \(n \)-square complex matrices such that

\[
\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \geq 0.
\]

Then, with \(\star \) for + or \(\circ \),

\[
A \star C \geq \pm (B^* \star B)
\]

and, if \(AB = BA \),

\[
A^\dagger C A^\dagger \geq B^* B.
\]

Proof. Since the block matrix via a permutation congruence is also positive semidefinite, we have (by the Schur Hadamard product theorem; see, e.g., [17, p. 192])

\[
\begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \star \begin{pmatrix} C & B^* \\ B & A \end{pmatrix} = \begin{pmatrix} A \star C & B^* \star B \\ B^* \star B & A \star C \end{pmatrix} \geq 0.
\]

(9) thus follows from (6). For (10), notice that if \(B \) commutes with \(A \), then \(B \) commutes with \(A^\dagger \) (see, e.g., [6, p. 322] or [17, p. 165]). Let \(A \) be nonsingular. Then

\[
C \geq B^* A^{-1} B = B^* A^{-\frac{1}{2}} A^{-\frac{1}{2}} B = A^{-\frac{1}{2}} B^* B A^{-\frac{1}{2}},
\]

5
from which, by pre- and post-multiplying both sides by $A^{\frac{1}{2}}$, we arrive at the desired inequality. The singular case of A follows from a continuity argument. ■

With the assumption of the theorem, we note the following.

Remark 3.1: For the sum in (9), the inequality $A + C \geq \pm(B + B^*)$ is also proven by observing

$$(I, \pm I) \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \begin{pmatrix} I \\ \pm I \end{pmatrix} = A \pm (B + B^*) + C \geq 0.$$

Remark 3.2: Applying (8) to (9), we have explicitly

$$\log |\lambda(B + B^*)| < w \log \lambda(A + C)$$

and

$$\log |\lambda(B \circ B^*)| < w \log \lambda(A \circ C).$$

In particular,

$$|\det(B + B^*)| \leq \det(A + C)$$

and

$$|\det(B \circ B^*)| \leq \det(A \circ C).$$

Remark 3.3: The condition $AB = BA$ for (10) is not removable in general, and B and B^* on the right hand side cannot be switched. It is easy to find an example that

$$\begin{pmatrix} I & B \\ B^* & C \end{pmatrix} \geq 0 \Rightarrow C \geq B^*B, \quad \text{but} \quad C \not\geq BB^*.$$

Remark 3.4: If the matrices B and C in the theorem commute, then

$$C^\frac{1}{2}AC^\frac{1}{2} \geq BB^*.$$

4. Applications

Applications of Theorem 2 to some frequently used 2×2 block positive semidefinite matrices result in some interesting inequalities. We present some as examples.

Assume in the following that matrices A, B, and C are all n-square (some results also hold for the rectangular case). We itemize with the block positive semidefinite matrices followed by immediate inequalities and comments.

Inequalities of one matrix:

1. $\begin{pmatrix} A & I \\ I & A^{-1} \end{pmatrix} \geq 0$, for any $A > 0$, gives
1i). \(2I \leq A + A^{-1};\)
1ii). \(I \leq A \circ A^{-1}.\)

Comments: These are existing inequalities. Alternative proof of the first one is by a unitary diagonalization of \(A\), while the second one’s proof does not come that easy; it usually needs to prove \(A \circ A^{-1} \geq (A \circ A^{-1})^{-1}\) first (see, e.g., [8]).

If \(A\) and \(B\) are both positive definite and \(n\)-square, by noticing that

\[
\left(\begin{array}{cc} A & I \\ I & A^{-1} \end{array} \right) \circ \left(\begin{array}{cc} B^{-1} & I \\ I & B \end{array} \right) = \left(\begin{array}{cc} A \circ B^{-1} & I \\ I & A^{-1} \circ B \end{array} \right) \geq 0,
\]

we obtain a result of Visick ([10, Theorem 5 ii]):

\[
A \circ B^{-1} + B \circ A^{-1} \geq 2I.
\]

2. \(\left(\begin{array}{cc} \sigma_1 I & A^* \\ A & \sigma_1 I \end{array} \right) \geq 0\), where \(\sigma_1\) is the largest singular value of (any) \(A\), implies

2i). \(|A + A^*| \leq 2\sigma_1 I;
2ii). \(|A \circ A^*| \leq \sigma_1^2 I.

Comments: A direct proof for 2i) and 2ii) without using the theorem may not work out as smoothly, though they are weaker than the following inequality 3i).

3. \(\left(\begin{array}{cc} |A|^{2\alpha} & A^* \\ A & |A^*|^{2(1-\alpha)} \end{array} \right) \geq 0\), for any \(A\) and \(\alpha \in [0, 1]\), gives

3i). \(|A \circ A^*| \leq |A|^{2\alpha} \circ |A^*|^{2(1-\alpha)}.

Comments: Taking \(\alpha = 1\), we have the comparison of sum and ordinary product

\(|A + A^*| \leq A^*A + I\)

and the comparison of the Hadamard product and ordinary product

\(|A \circ A^*| \leq A^*A \circ I.

In particular, if \(A\) is positive semidefinite, with the above \(A\) replaced by \(A^{\frac{1}{2}}\),

\[
2A^{\frac{1}{2}} \leq A + I, \quad A^{\frac{1}{2}} \circ A^{\frac{1}{2}} \leq A \circ I = \text{diag}(A).
\]

And taking \(\alpha = \frac{1}{2}\), we have the inequalities involving sum and the two products

\(|A + A^*| \leq |A| + |A^*|, \quad |A \circ A^*| \leq |A| \circ |A^*|.

(Note: Neither \(|A + B| \leq |A| + |B|\) nor \(|A \circ B| \leq |A| \circ |B|\) holds in general.)
Inequalities of two or three matrices:

4. \[\begin{pmatrix} A & B \\ B^* & B^*A^{-1}B \end{pmatrix} \succeq 0, \text{ for any } A > 0 \text{ and any } B, \] gives

4i). \[\pm(B \ast B^*) \leq A \ast (B^*A^{-1}B). \]

Comments: If \(B = I \), then the block matrix is the same as the one in 1). Taking \(B = J \), the all one matrix, and switching \(A \) and \(A^{-1} \), one obtains a lower bound for the inverse of \(A \):

\[
\frac{1}{\Sigma(A)} J \leq A^{-1},
\]

where \(\Sigma(A) = \sum a_{ij} \) is the sum of all entries of \(A \). Note also that for any \(A > 0 \)

\[
\begin{pmatrix} A & J \\ J & \Sigma(A^{-1})J \end{pmatrix} \succeq 0.
\]

With a similar block matrix for \(B > 0 \), one obtains a lower bound for \(A \circ B \):

\[
A \circ B \geq \frac{1}{\Sigma(A^{-1})\Sigma(B^{-1})} J.
\]

5. \[\begin{pmatrix} A & A^*C^*B^* \\ B^* & C^*B^*A^{-1}B \end{pmatrix} \succeq 0, \text{ for } A, B \geq 0 \text{ and any contraction matrix } C, \] gives

5i). \((A^*C^*B^*) \ast (B^*C^*A^*) \leq A \ast B. \)

Comments: Taking \(B = C = I \) for the Hadamard product yields \(A^* \circ A \leq A \circ I \) as seen in 3). 5i) is equivalent to \((ACB) \ast (BCA) \leq A^2 \ast B^2 \). Setting \(C = I \) gives \(AB + BA \leq A^2 + B^2 \) and its Hadamard companion \(AB \circ BA \leq A^2 \circ B^2 \).

6. \[\begin{pmatrix} A^*A & A^*B \\ B^*A & B^*B \end{pmatrix} \succeq 0, \text{ for any } A \text{ and } B, \] gives

6i). \(\pm(A^*B \ast B^*A) \leq A^*A \ast B^*B. \)

Comments: The Hadamard product case of 6i) is seen in [10, Corollary 12]. In particular, if we take \(B = I \) for the Hadamard product, then \(\pm(A^* \circ A) \leq A^* A \circ I \). Letting \(A > 0 \) and setting \(B = A^{-1} \) results in 1ii).

7. \[\begin{pmatrix} I + A^*A & A^* + B^* \\ A + B & I + BB^* \end{pmatrix} \succeq 0, \text{ for any } A \text{ and } B, \] gives

7i). \((A + B) \circ (A + B)^* \leq (I + A^*A) \circ (I + BB^*). \)
Comments: This Hadamard product matrix inequality is compared to the conventional product matrix inequality (by taking Schur complement)

\[(A + B)(I + A^*A)^{-1}(A + B)^* \leq I + BB^*.
\]

8. \[
\begin{pmatrix}
AA^* \circ I & A \circ B \\
A^* \circ B^* & B^*B \circ I
\end{pmatrix} \geq 0, \text{ for any } A \text{ and } B,
\]
gives

8i). \(A \circ B + A^* \circ B^* \leq AA^* \circ I + B^*B \circ I;\)
8ii). \(A \circ A^* \circ B \circ B^* \leq AA^* \circ B^*B \circ I.
\]

Comments: For \(A \geq 0\) and \(B \geq 0\), 8i) gives the inequality of means for Hadamard product

\[A \circ B \leq \frac{A^2 + B^2}{2} \circ I.
\]

It follows that for any correlation matrices \(A\) and \(B\) (with diagonal entries 1)

\[A^\frac{1}{2} \circ B^\frac{1}{2} \leq I.
\]

Notice that \(AA^* \leq \sigma_1 I\). We put \(B = A^t\), the transpose of \(A\) in 8ii). Then

\[A \circ A^* \circ A^t \circ \overline{A} \leq \sigma_1^4 I.
\]

9. \[
\begin{pmatrix}
AA^* \circ BB^* & A \circ B \\
A^* \circ B^* & I
\end{pmatrix} \geq 0, \text{ for any } A \text{ and } B,
\]
gives

9i). \((A \circ B)(A^* \circ B^*) \leq AA^* \circ BB^*.
\]

Comments: This has appeared in [15] and in a recent paper [10, Theorem 4].

10. \[
\begin{pmatrix}
|A| \circ |B| & A^* \circ B^* \\
A \circ B & |A^*| \circ |B^*|
\end{pmatrix} \geq 0, \text{ for any } A \text{ and } B,
\]
gives

10i). \(|A \circ B + A^* \circ B^*| \leq |A| \circ |B| + |A^*| \circ |B^*|;\)
10ii). \(|A \circ A^* \circ B \circ B^*| \leq |A| \circ |A^*| \circ |B| \circ |B^*|.
\]

Comments: By taking \(B\) to be a matrix of 0 and 1, one can get the inequalities for the specified entries of \(A\). For example, if \(B\) is a permutation matrix, then \(|B| = |B^*| = I\) and one gets the inequalities that compare any diagonal (entries) of \(A\) to the diagonals of \(|A|\) and \(|A^*|\). And one may also obtain inequalities for submatrices of \(A\) by setting \(B = \left(\begin{array}{cc} 0 & 0 \\ J & 0 \end{array}\right)\).
11. \(\begin{pmatrix} A & AB \\ B^*A & B^*AB \end{pmatrix} \geq 0 \), for any \(A \geq 0 \) and any \(n \times m \) matrix \(B \), implies

11i). \(B^*A + AB \leq A + B^*AB; \)
11ii). \(B^*A \circ AB \leq A \circ (B^*AB). \)

Comments: Setting \(B = A^k \) yields the inequalities of shifting \(A \)
\[2A^{k+1} \leq A + A^{2k+1}, \quad k = 1, 2, \ldots, \]
and
\[A^{k+1} \circ A^{k+1} \leq A \circ A^{2k+1}, \quad k = 1, 2, \ldots. \]

Inequalities of generalized inverses:

12. \(\begin{pmatrix} A & AA^+ \\ A^+A & A^+ \end{pmatrix} \geq 0 \), for any \(A \geq 0 \), gives

12i). \(A \circ A^+ \geq A^+A \circ AA^+; \)
12ii). \(A + A^+ \geq A^+A + AA^+. \)

Comments: These are compared to the inequality of Visick in [11, p. 282]:
\[A \circ A^+ \geq (AA^+ \circ AA^+)(A \circ A^+)^+(AA^+ \circ AA^+). \]

Combining the above block matrices via sum or Hadamard product, one may get more block positive semidefinite matrices and thus more inequalities. For instance, if \(A \geq 0 \) and \(B > 0 \), both \(n \)-square, then
\[\begin{pmatrix} I & A \\ A & A^2 \end{pmatrix} \circ \begin{pmatrix} B & I \\ I & B^{-1} \end{pmatrix} = \begin{pmatrix} I \circ B & I \circ A \\ I \circ A & I \circ A^2 \circ B^{-1} \end{pmatrix} \geq 0. \]

Thus
\[A^2 \circ B^{-1} \geq (I \circ A)(I \circ B)^{-1}(I \circ A) = (\text{diag } A)^2(\text{diag } B)^{-1}. \]

Note that the right hand side involves only the diagonal entries of \(A \) and \(B \). In addition, for any correlation matrix \(A \) and nonsingular correlation matrix \(B \)
\[A^2 \circ B^{-1} \geq I. \]

More inequalities are available by substituting the above matrices with matrices involving Kronecker product and by using the fact that the Hadamard product is a principal submatrix of the Kronecker product when the matrices are square. One also gets majorization inequalities by applying Theorem 1 to the above block matrices.
References

